تَله ي پنينگ

احمد شریعتی در این مقاله ی آموزشی توضیح داده میشود که تله ی ِ پِنینگ چیست و چه گونه میتوان با آن ذرهها یِ باردار (یونها یا الکترونها) را در نزدیکی یِ نقطه یِ خاصّ ی از فضا گیر انداخت. به برخ ی از کاربردها یِ تله یِ پِنینگ نیز اشاره میشود.

1 مقدّمه

تله ي بِنينگ وسيله اى است كه در آن تركيب ِ يك ميدان ِ الكتريكى با يك ميدان ِ مغناطيسى چنان اثر ى بر حركت ِ يك بار دارد كه ذرّه در ناحيه اى محدود مقيّد مىشود ـــ چيز ى كه با اعمال ِ يك ميدان ِ الكتريكى ي تنها يا يك ميدان ِ مغناطيسى ي تنها شدنى نيست. به علاوه، حركت ِ ذرّه در تله ي يِنينگ هم در حد ِ كلاسيك و هم در حدّ ِ كوانتومى حل پذير است، و به اين ترتيب رفتار ِ ذرّه (يون يا الكترون) را مىتوان به دقّت پيش بينى كرد.

تله ى ِ بِنينگ اختراع ِ هانس گِئورگ دِمِلت ^{ه)} است. دِمِلت اين وسيله را به افتخار ِ بِنينگ ^{d)}، فيزيکپيشه ى ِ هلندى، «تله ى ِ بِنينگ» نامگذارى كرده است. اين وسيله باعث شد فيزيکپيشهها بتوانند يونها يا الكترونها را در جا يى گيربيندازند. دِمِلت يک ى از سه برنده ي جايزه ي نُبل ِ فيزيک در سال ِ 1989 بود.

2 ميدانها

در تله ي پِنينگ، ميدان ِ مغناطيسي بسيار ساده است ــ ميدان ي ثابت در امتداد _ محور _ z.

$$\vec{B} = B \,\mathbf{k}.\tag{1}$$

در چنين ميدان ى يک ذرّہ ي باردار به بار ِ p و جرم ِ M حرکت ى مارپيچى دارد که بسامد ِ زاويه اي مؤلفه ي دايرهاى ي آن همان بسامد ِ معروف به «بسامد ِ سيکلوترون» است:

$$\omega_c := \frac{|q|B}{M}, \qquad \nu_c := \frac{\omega_c}{2\pi}.$$
(2)

در این فرمول علامت ِ قدرِمطلق را مخصوصاً وارد کرده ایم تا بسامد ی که به دست می آید همواره مثبت باشد ــ توجّه داریم که جهت ِ گردش ِ ذرّه در میدان ِ مغناطیسی به علامت ِ بار ِ آن بستهگی دارد . برا ی ِ الکترون یا پوزیترون در یک میدان ِ B = 5.8 T خواهیم داشت:

$$\nu_c = 160 \,\text{GHz}.\tag{3}$$

ذرّه ي باردار ِ كلاسيك ى كه با چنين بسامد ى بچرخد، امواج ِ الكترومغناطيس ى با همين بسامد گسيل مىكند. طولِموج ِ اين امواج mm این امواج است. امّا ميدان ِ الكتريكى به اين شكل است:

$$\vec{E}(\vec{r}) = \frac{M\omega_z^2}{2q} \left(x \,\mathbf{i} + y \,\mathbf{j} - 2 \,z \,\mathbf{k} \right),\tag{4}$$

که در این جا $_{x}^{\omega}$ ثابت ی از جنس ِ بسامد ِ زاویهای است. این میدان مشتق از پتانسیل ِ الکتریکی یِ زیر است.

$$\Phi(\vec{r}) := \frac{M\omega_z^2}{4q} \left(2z^2 - x^2 - y^2 \right).$$
(5)

دقّت كنيد كه لاپلاسى ي اين تابع صفر است و در مختصّهها ي كروى به شكل ِ ضريب ى از $r^2 P_2(\cos \theta)$ است $P_2(\cos \theta)$ چندجملهاى ي لُژاندر با شاخص ِ 2 است). با توجّه به شكل ِ پتانسيل در مختصّهها ي دكارتى، واضح است كه سطح ِ همپتانسيل ِ 0 يك مخروط است، و باقى ي سطوح ِ همپتانسيل هذلولى گونها يى يكپارچه يا دوپارچه اند. مثلاً اگر p مثبت باشد، سطوح ِ همپتانسيل با پتانسيل ِ مثبت هذلولى گونها ي دوپارچه، و سطوح ِ همپتانسيل با پتانسيل ِ منفى هذلولى گونها ي يحيارچه اند.

$$\begin{cases} 2 z^{2} - x^{2} - y^{2} = \text{constant} \leq 0 & \text{akely} \\ 2 z^{2} - x^{2} - y^{2} = 0 & \text{akely} \\ 2 z^{2} - x^{2} - y^{2} = 0 & \text{constant} \\ 2 z^{2} - x^{2} - y^{2} = \text{constant} \geq 0 & \text{akely} \end{cases}$$
(6)

$$\nu_z := \frac{\omega_z}{2\pi}.\tag{7}$$

فرض كيند برا ي الكترون ($u_z = 64 \,\,\mathrm{MHz}$ مىخواھيم ($q = -1.6 imes 10^{-19} \,\,\mathrm{C}$ باشد. اين يعنى

شکل ۱: هذلولی ها ی $z^2 = \pm 0.435 \; {
m cm}^2$ که با مقیاس $rac{4}{1}$ کشیده شده اند.

$$\frac{M\omega_z^2}{4q} = -2.30 \times 10^5 \,\mathrm{V \,m^{-2}} = -23.0 \,\mathrm{V \,cm^{-2}}.$$
(8)

پس معادله ي سطوح ِ همپتانسيل ِ $10\,{
m V}=\pm 0$ ميشود هذلولي گونها ي

$$2z^{2} - x^{2} - y^{2} = \frac{4q}{M\omega_{z}^{2}}\Phi_{0} = \frac{\pm 10 \,\mathrm{V}}{-23.0 \,\mathrm{V} \,\mathrm{m}^{-2}} = \mp 0.435 \,\mathrm{cm}^{2} = \mp \left(0.659 \,\mathrm{cm}\right)^{2}.$$
 (9)

هذلولىها ي $2z^2 - x^2 = x^2 - x^2 = 2$ را در شكل 1 كشيده ايم. اگر اين هذلولىها را حول محور _ x بچرخانيم هذلولىگونها ي $2z^2 - x^2 - y^2 = x^2 - y^2 = x^2 - y^2$ محور _ z بچرخانيم هذلولىگونها ي $2z^2 - x^2 - y^2 = x^2 - y^2$ به دست مى آيند. اگر چنين هذلولىگونها يى را با فلز بسازيم و آنها را به پتانسيلها ي $10 \pm 10 \pm 2$ وصل كنيم، در فضا ي بين هذلولى گونها يك ميدان _ الكتريكى ايجاد مىشود. پتانسيل ها ي 10 ± 2 محادل مى شود يك تابع هذلولى گونها ي بين محادل ي محادل ي معادل كنيم، در فضا ي بين _ هذلولى گونها يك ميدان _ الكتريكى ايجاد مىشود. پتانسيل ميدان ى كه ايجاد مى شود يك تابع هذلولى گونها يك ميدان _ الكتريكى ايجاد مى شود. پتانسيل ميدان ى كه ايجاد مى شود يك تابع ي هندل ي ي ايت ي ايت

الکترون ی که با بسامد ِ $u_z = 64 \,\,\mathrm{MHz}$ نوسان کند، امواج ِ الکترومغناطیس ی با همین بسامد $\lambda_z = 4.7 \,\,\mathrm{m}$ گسیل می کند که طولِموج ِ آنها $\lambda_z = 4.7 \,\,\mathrm{m}$ است.

شکل ۲: ساختمان ِ تله ی پِنینگ. دقّت کنید که نقطه ی ِ مینیمم ِ هذلولی گون ِ کلاهک سوراخ است. مس ِ OFHC یعنی مس ِ بی اکسیژن و بسیار رسانا (Oxygen Free MACOR یک سرامیک ِ شیشهای و شبیه به چینی است که نارسانا یِ بسیار خوب ی است.. شکل از مرجع ِ [1] برداشته شده است.

معادله ي حركت ِ كلاسيک و غيرِنسبيّتی برا ي ذرّه ای كه در تله ي پِنينگ حركت میكند چنين است:

$$M \frac{d^2 \vec{r}}{dt^2} = \vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$
$$= \frac{1}{2} M \omega_z^2 \left(x \, \mathbf{i} + y \, \mathbf{j} - 2 \, z \, \mathbf{k} \right) + \operatorname{sgn}(q) M \, \omega_c \left(\dot{y} \, \mathbf{i} - \dot{x} \, \mathbf{j} \right)$$
(10)

که در این جا $({
m sgn}(q)=-1)$ علامت ِ بار ِ p است. برا یِ الکترون $({
m sgn}(q)=-1)$ خواهیم داشت:

$$\ddot{x} + \omega_c \, \dot{y} - \frac{1}{2} \, \omega_z^2 \, x = 0, \tag{11}$$

$$\ddot{y} - \omega_c \, \dot{x} - \frac{1}{2} \, \omega_z^2 \, y = 0, \tag{12}$$

$$\ddot{z} + \omega_z^2 z = 0. \tag{13}$$

معادله ي z بسيار ساده است ــ نوسان _ هم آهنگ با بسامد _ زاويهای ي w_z ـــ و از اين جا ضمناً معلوم میشود که چرا از نماد _ w_z اسفتاده کرديم. برا ي حل كردن ِ معادلهها ي حركت ِ مؤلفهها ي x و y، كه از z جدا شده اند، كافى است متغيّر ِ مختلط ِ z را تعريف كنيم.

$$\xi := x + i y. \tag{14}$$

به ساده گی دیده می شود که خواهیم داشت:

$$\ddot{\xi} - i\,\omega_c\,\dot{\xi} - \frac{1}{2}\,\omega_z^2\,\xi = 0. \tag{15}$$

این معادله یِ دیفرانسیل را میتوان با جاگذاری یِ $\epsilon = A \, e^{i\,\omega\,t}$ به یک معادله یِ جبری یِ ساده تبدیل کرد :

$$-\omega^2 + \omega_c \,\omega - \frac{1}{2}\,\omega_z^2 = 0,\tag{16}$$

که دو ریشه دارد:

$$\omega_{+} = \frac{1}{2} \left(\omega_{c} + \sqrt{\omega_{c}^{2} - 2\omega_{z}^{2}} \right) \tag{17}$$

$$\omega_{-} = \frac{1}{2} \left(\omega_c - \sqrt{\omega_c^2 - 2\,\omega_z^2} \right) \tag{18}$$

معادله ي (15) خطّى است و دو حل ِ مستقل دارد كه با دو ريشه ي +w و -w متناظر اند. پس حلّ ِ كلّى ي (15) به شكل ِ زير است.

$$\xi(t) = A_{-} e^{i(\omega_{-} t + \phi_{-})} + A_{+} e^{i(\omega_{+} t + \phi_{+})}, \qquad (20)$$

که در این جا A_- و A_+ و ϕ_+ و ϕ_+ چهار ثابت ِ حقیقی اند. واضح است که داریم $x = \operatorname{Re}(\xi)$ و $y = \operatorname{Im}(\xi)$ ، و به این ترتیب:

$$x(t) = A_{-} \cos(\omega_{-}t + \phi_{-}) + A_{+} \cos(\omega_{+}t + \phi_{+})$$
(21)

$$y(t) = A_{-} \sin(\omega_{-}t + \phi_{-}) + A_{+} \sin(\omega_{+}t + \phi_{+}).$$
(22)

$$z(t) = A_z \cos(\omega_z t + \phi_z) \tag{23}$$

شکل ۳: تصویر مدار حرکت کلاسیک در صفحه ی xy.

اگر A_+ و A_- صفر باشند، ذرّه رو ي محور z - z حرکت نوسانی میکند. اگر A_+ یا A_- صفر نباشند، باز هم حرکت توصيف ِ ساده ای دارد: ذرّه با بسامد ِ زاويه ای ي w_+ رو ي دايره ای به شعاع A_+ حرکت میکند که مرکز ِ اين دايره خود با بسامد ِ زاويه ای ي w_- رو ي دايره ای به شعاع A_- حرکت میکند. اين حرکت درست مانند ِ حرکت ِ ماه و سيّاره ها در هيئت ِ بطلميوسی است ـ فلکها ی ِ حامل و تدوير. خوب است در اين جا به اين عددها توجّه کنيم. برا ي w_+ 64 MHz و $v_c = 160$ GHz و $v_z = 64$ MHz

$$\nu_{-} = \frac{\omega_{-}}{2\pi} = 13 \,\text{kHz},\tag{24}$$

$$\nu_z = 64 \,\mathrm{MHz} \tag{25}$$

$$\nu_{+} = \frac{\omega_{+}}{2\pi} \simeq \nu_{c} = 160 \text{ GHz}, \qquad (26)$$

$$\nu_{-} \ll \nu_{z} \ll \nu_{-} \simeq \nu_{c}. \tag{27}$$

حال اگر $A \gg A + A$ باشد، تصویر _ مدار در صفحه ي xy مثل ٍ شكل ٍ ۳ است، به این نحو كه مختصّه ي z _ الكترون حول 0 با بسامد AH = 4 نوسان مىكند؛ تصویر _ مكان _ الكترون در صفحه ي xy رو ي دايره اى به شعاع A + (كه فرض شده كوچك است) با بسامد BH = 160 (يعنى بسيار سريع) مىچرخد، در حالى كه مركز _ اين دايره خود رو ي دايره اى به شعاع A - (كه فرض شده بسيار بزرگتر از A + 100 (كه فرض شده مىچرخد. به اين ترتيب حركت _ كلاسيك _ از A + 100) با بسامد A + 200 مىچرخد. به اين ترتيب حركت _ كلاسيك _ الكترون چنان است كه الكترون در نزديكى ي مبداء باقى مىماند (مبداء رأس _ مخروط _ پتانسيل _ 0 است). دقّت كنيد كه A + 200 یعنی اندازه ی ِ محفظه ای که بین ِ هذلولیگونها ی ِ فلزّی هست متناهی است. پس اگر +A یا _A از حدّ ی بزرگتر باشند الکترون در واقع به هذلولیگونها ی ِ فلزّی میخورد.

پیش از ادامه خوب است چند اصطلاح را معرفی کنیم. حرکت ِ کلاسیک ِ الکترون ترکیب ِ سه حرکت ِ الکترون ترکیب ِ سه حرکت است: 1) نوسان در امتداد ِ محور ِ z با بسامد ِ z v که به آن «نوسان ِ محوری» میگویند. 2) حرکت ِ دایره ای حول ِ محور ِ z با بسامد $v_{2} \simeq v_{2}$ که به آن حرکت ِ «سیکلوترونی» میگویند. 3) حرکت ِ دایره ای حول ِ محور ِ z با بسامد ِ $v_{c} \simeq v_{c}$ که به آن حرکت ِ «مگنِترونی» میگویند.

در شكل ۲ جزئيات ساختمان تله ي بنينگ ى كه ديملت و همكاران ش ساخته اند رسم شده است. با اعمال يك ولتاژ زياد به سوزن تنگستنى (محل الف در شكل ۲) الكترون ها ي پرانرژى اى از آن گسيل مىشوند كه در برخورد با اتمها ي گاز بسياررقيق ى كه در آن اطراف هست منجر به گسيل . الكترون ها ي كمسرعت مىشوند. اين الكترون ها ي كمسرعت اند كه در تله گير مىافتند. همان طور كه ديديم، حركت الكترون ى كه گير افتاده تركيب سه حركت نوسانى است. امّا الكترون ى كه نوسان كند تابش مىكند، و سريعترين نوسان الكترون ى كه گير افتاده مربوط به حركت سيكلوترونى است. پس تابش مىكند، و سريعترين نوسان الكترون ى كه گير افتاده مربوط به حركت سيكلوترونى است. پس ترتيب دامنه ى حركت سيكلوترونى است كند با اين تابش الكترون انرژى از دست مىدهد، و به اين ترتيب دامنه ى حركت سيكلوترونى به سرعت كم مىشود. البتّه بايد دقّت كرد كه اين الكترون در يك فضا ى بى بى نهايت بزرگ نيست، بل كه در كاواك ى فلزّى است كه ابعاد آن از مرتبه ى است و دقت كنيد كه شكل كاواك مكعب نيست). به اين ترتيب مطالعه ى تابش الكترون مىكند، خواننده ى مطاله ى تابش الكترون ى است كه در فضا ى خالى حركت سيكلوترونى مىكند. خواننده ي مطاله ى تابش الكترون ى است كه در فضا ى خالى حركت سيكلوترون مىكند. خواننده ى

4 حرکت کوانتمی ی ذرّہ

ديديم كه تله ي بِنِينگ مىتواند الكترون ِ كلاسيك را گير بيندازد. امّا الكترونها ي واقعى كوانتمى اند، به اين معنى كه رفتار ِ آنها را تابع ِ موج ى توصيف مىكند كه حلّ ِ معادله ي شرودينگر است. برا ي بررسى ي مسئله ابتدا بايد هميلتونى ى ِ كوانتمى را بنويسيم. اين كار كاملاً سرراست است. ابتدا بايد يك پتانسيل ِ بردارى برا ى ِميدان ِ مغناطيسى انتخاب كنيم. انتخاب ِ زير، همان طور كه ديده خواهد شد، انتخاب ِ بسيار مناسب ى است.

$$\vec{A} = \frac{1}{2}B \left(-y \,\mathbf{i} + x \,\mathbf{j}\right). \tag{28}$$

حالا، برا ی ِ یک ذرّہ ی ِ بی اسپین داریم

$$H = \frac{1}{2M} \left[(p_x - qA_x)^2 + (p_y - qA_y)^2 + (p_z - qA_z)^2 \right] + q\Phi(\vec{r})$$

$$= \frac{1}{2M} \left[\left(p_x + \frac{1}{2}qBy \right)^2 + \left(p_y - \frac{1}{2}qBx \right)^2 + p_z^2 \right] + q\Phi(\vec{r})$$

$$= \frac{1}{2M} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{q^2B^2}{8M} \left(x^2 + y^2 \right) + \frac{qB}{2M} \left(yp_x - xp_y \right) + q\Phi(\vec{r})$$

$$= \frac{1}{2M} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{M}{8} \omega_c^2 \left(x^2 + y^2 \right) + \frac{\omega_c}{2} L_z + \frac{M\omega_z^2}{4} \left(2z^2 - x^2 - y^2 \right)$$

$$= \underbrace{\frac{p_x^2 + p_y^2}{2M} + \frac{M}{8} \omega_c^2 \left(x^2 + y^2 \right) + \frac{\omega_c}{2} L_z - \frac{M\omega_z^2}{4} \left(x^2 + y^2 \right) + \underbrace{\frac{p_z^2}{2M} + \frac{M\omega_z^2}{2} z^2}_{H_z}$$

$$H = H_{xy} + H_z \tag{29}$$

$$H_z = \frac{p_z^2}{2M} + \frac{1}{2} M \,\omega_z^2 \, z^2 \tag{30}$$

$$H_{xy} = \frac{p_x^2 + p_y^2}{2M} + \frac{M}{8} \left(\omega_c^2 - 2\omega_z^2\right) \left(x^2 + y^2\right) + \frac{1}{2} \omega_c L_z$$
$$= \frac{1}{2M} \left(p_x^2 + p_y^2\right) + \frac{1}{2} M \Omega^2 \left(x^2 + y^2\right) + \frac{1}{2} \omega_c L_z$$
(31)

$$\Omega := \frac{1}{2} \sqrt{\omega_c^2 - 2\omega_z^2}.$$
(32)

 H_{xy} به این ترتیب دیده می شود که H مجموع دو عمل گر است ، H_z که فقط تابع ی از z و z است ، و p_x به این ترتیب دیده می شود که H مجموع دو عمل گر است ، H_z که فقط تابع ی از x و y و z و z و p_x است . به وضوع H_x با H_x جابه جا می شود . پس برا ی یافتن ویژه مقدارها و ویژه تابع می از x و y و z را بیابیم . ویژه مقدارها و ویژه تابعها ی H کافی است مستقلاً ویژه مقدارها و ویژه تابعها ی y_x و z را بیابیم . H_z همیلتونی ی یک نوسان گر ساده است با بس آمد v_z . ویژه توابع z کاملاً شناخته شده اند . ویژه مقدارها ی آن به شکل ΔL_z ($n_z + \frac{1}{2}$) اند ، که در این جا z می عدد صحیح رامنفی است . خوب است توجّه کنیم که

$$\hbar \,\omega_z = h \,\nu_z = 2.7 \times 10^{-7} \,\mathrm{eV}. \tag{33}$$

اگر H_{xy} جمله ی مناسب با L_z را نداشت، یک نوسان گر مهم آهنگ همسان گرد دوبعدی بود. خوب است حل نوسان گر مهم آهنگ همسان گرد دوبعدی را مرور کنیم (آن چه در زیر می آید در بسیار ی از کتابها ی درسی ی مکانیک کوانتمی هست، مثلاً در [4]). همیلتونی ی زیر را در نظر بگیریم.

$$H' = \frac{p_x^2 + p_y^2}{2M} + \frac{1}{2} M \Omega^2 \left(x^2 + y^2 \right).$$
(34)

از حل ِ نـوسـانگـر _ هـم آهـنـگ ِ يـک بـعـدی مـیدانيـم کـه ويـژهمـقـدارهـا ی ِ H' بـه شـکـل ِ از حـل ِ نـوسـانگـر _ هـم آهـنـگ ِ يـک بـعـدی مـیدانيـم کـه ويـژهمـقـدارهـا ی ِ N_x بـه شـکـل $E_{n_x,n_y} = \hbar \Omega \left(n_x + \frac{1}{2} + n_y + \frac{1}{2} \right)$ ويژه مقدارها ي عملگرها ي N_x و N_x اند:

$$N_x = a_x^{\dagger} a_x \tag{35}$$

$$N_y = a_y^{\dagger} a_y \tag{36}$$

که در این جا

$$a_x = \sqrt{\frac{M\,\Omega}{2\,\hbar}} \, x + \frac{i\,p_x}{\sqrt{2\,\hbar\,M\,\Omega}} \tag{37}$$

$$a_y = \sqrt{\frac{M\,\Omega}{2\,\hbar}}\,y + \frac{i\,p_y}{\sqrt{2\,\hbar\,M\,\Omega}}\tag{38}$$

این مطلب هم به خوبی دانسته است که اگر تعریف کنیم

$$a_{+} = \frac{1}{\sqrt{2}} \left(a_x + i \, a_y \right) \tag{39}$$

$$a_{-} = \frac{1}{\sqrt{2}} \left(a_x - i \, a_y \right), \tag{40}$$

آن وقت داريم

$$N_{+} + N_{-} = a_{+}^{\dagger} a_{+} + a_{-}^{\dagger} a_{-} = a_{x}^{\dagger} a_{x} + a_{y}^{\dagger} a_{y} = N_{x} + N_{y}$$
(41)

و ضمناً $a_{\pm} e = \frac{1}{2} a$ همان جبر $a = \frac{1}{2} a$ را برآورده میکنند. بنا بر این ویژهمقدارها ی $N_{\pm} = N_{\pm} a$ هم عددها ی صحیح ِ نامنفی است. به این ترتیب دیده میشود که طیف ِ نوسانگر ِ هم آهنگ ِ همسانگرد ِ دوبعدی را می وی می وان به شکل $M_{n+,n-} = \frac{1}{2} a$ می نوشت. ویژه حالتها ی متناظر را با $M_{n+,n-} = \frac{1}{2} a$ می وهم. می وان نشان داد که که این تابعها ویژه حالت ِ L_z اند و داریم

$$L_z \Psi_{n_+,n_-} = \hbar (n_+ - n_-) \Psi_{n_+,n_-}.$$
(42)

چون انرژی فقط به $(n_+ + n_-)$ و مؤلفه ی z ِ تکانه ی زاویهای فقط به $(n_+ - n_-)$ بسته گی دارد، خوب است تعریف کنیم:

$$n := n_{+} + n_{-}, \tag{43}$$

$$m := n_{+} - n_{-}, \tag{44}$$

و تابع ِ حالت را با $\Phi_{n,m}$ نشان دهیم $(\Phi_{n,m} = \Psi_{n+,n-})$. میتوان نشان داد که در مختصّهها یِ قطبی $(
ho, \varphi)$

$$\Phi_{n,m} = \frac{1}{\sqrt{2\pi}} e^{i\,m\,\varphi} P_{n,m}\left(\frac{\rho}{d}\right) \tag{45}$$

$$d := \sqrt{\frac{\hbar}{M\,\Omega}} \tag{46}$$

$$P_{n,m}(x) = (-1)^{\frac{n-|m|}{2}} \sqrt{2 \frac{\left(\frac{n-|m|}{2}\right)!}{\left(\frac{n+|m|}{2}\right)!}} x^{|m|} L_{\frac{1}{2}(n-|m|)}^{(|m|)} \left(x^2\right) e^{-\frac{1}{2}x^2}$$
(47)

در این جا $L_n^{(lpha)}(x)$ چندجملهای یِ لاگِر است با تعریف ِ

$$L_{n}^{(\alpha)}(x) := \frac{1}{n!} x^{-\alpha} \left(\frac{d}{dx} - 1\right)^{n} x^{n+\alpha}$$
(48)

$$= \sum_{k=0}^{n} (-1)^{k} \frac{(n+\alpha)!}{(n-k)! (k+\alpha)!} \frac{x^{k}}{k!}.$$
 (49)

اکنون به (31) نگاه کنیم. واضح است که
$$\Phi_{n,m}$$
 ویژهتابع ِ این همیلتونی است، زیرا:

$$H_{xy} \Phi_{n,m} = \left\{ \hbar \Omega(n+1) + \frac{1}{2} m \hbar \omega_c \right\} \Phi_{n,m}.$$
(50)
حالا ویژهمقدار را بر حسب ِ n_+ و n_- بازنویسی کنیم.

$$\Omega(n+1) + \frac{1}{2} m \,\omega_c = \Omega(n_+ + n_- + 1) + \frac{1}{2} \,\omega_c(n_+ - n_-) \tag{51}$$

$$= \left(\Omega + \frac{1}{2}\omega_c\right)n_+ + \left(\Omega - \frac{1}{2}\omega_c\right)n_- + \Omega \tag{52}$$

تعريف كنيم

$$\omega_+ = \Omega + \frac{1}{2}\,\omega_c,\tag{53}$$

$$\omega_{-} = \frac{1}{2}\,\omega_c - \Omega. \tag{54}$$

اینها درست همان ω_{\pm} ی هستند که از بحث ِکلاسیک به دست آمد. به سادهگی دیده میشود که ω_{\pm} اینها درست همان $\Omega = \frac{1}{2}(\omega_+ - \omega_-)$

$$E_{n_{+},n_{-}} = \hbar \,\omega_{+} \,\left(n_{+} + \frac{1}{2}\right) - \hbar \,\omega_{-} \,\left(n_{-} + \frac{1}{2}\right). \tag{55}$$

تا این جا تابع ِ موج ِ ذرّہ ای را به دست آوردہ ایم که اسپین ِ آن صفر است. اگر اسپین ِ ذرّہ
$$\hbar ec \sigma$$
، $rac{1}{2}\hbar ec \sigma$ بار ِ آن q و جرم ِ آن M باشد، جمله یِ زیر به همیلتونی اضافه میشود.

$$E_{\rm spin} = -\left(\frac{g}{2} \frac{q}{M} \frac{\hbar}{2} \vec{\sigma} \cdot \vec{B}\right). \tag{56}$$

برا ي الكترون $\frac{g}{2} = 1.00116$ ، وq = -e است. بنا بر اين برا ي الكترون داريم

$$E_{\rm spin}^{\rm electron} = \hbar \left(\frac{g}{2}\,\omega_c\right) \frac{1}{2}\,\sigma_z \tag{57}$$

تعريف ميكنيم:

$$\omega_s := \frac{g}{2} \,\omega_c \qquad \nu_s := \frac{\omega_s}{2\,\pi}.\tag{58}$$

دقّت کنید که ω_s و ω_c و ω_s با هم فرق دارند، و البتّه بسیار نزدیک به هم اند. بسامد ِ ناهنجار ِ ω_a (در واقع ν_a) را تعریف میکنیم

$$\omega_a := \omega_s - \omega_+ \qquad \nu_a = \frac{\omega_a}{2\pi}.$$
(59)

حالا مىتوانيم انرژى ي كل يك الكترون در تله ي يِنينگ را بنويسيم.

$$E = \hbar \omega_{+} \left(n_{+} + \frac{1}{2} \right) - \hbar \omega_{-} \left(n_{-} + \frac{1}{2} \right) + \hbar \omega_{z} \left(n_{z} + \frac{1}{2} \right) + \hbar \omega_{s} \frac{1}{2} s$$
(60)
در فرمول بالا *s* یا 1 است یا 1–، که نشان دهنده ي بالا یا پایین بودن اسپین الکترون است.

5 اتم ِژئونيوم

ذرّه ي باردار ى كه در يك تله ى ِ بِنينگ گير اُفتاده باشد مثل ِ يك اتم است ــ تابع ِ موج اش در اطراف ِ يك نقطه متمركز است، طيف ِ گسسته اى دارد، و ويژه حالتها يش كاملاً دانسته اند. به اين نكته توجّه كنيد كه جرم ى كه در هميلتونى، بسامدها، و انر ژىها ظاهر مىشود خود ِ جرم ِ ذرّه است و نه جرم ِ كاهش يافته.

دِمِلت به این سیستم نام ِ اتم ِ «ژِئونیوم» Geonium داده است [1 تا 3] . این نام از ژِئو به معنی یِ زمین می آید ــ نشانگر ِ این که ذرّه یِ باردار را نه میدان ِ یک هسته، بل که میدان ی که نسبت به زمین ثابت است مقیّد کرده است.

ترازها ي ژِئونيوم با چهارتايىها ي (n_+,n_z,n_-,s) مشخّص مىشوند. برا ي الكترون

$$E_{n_{+},n_{z},n_{-},s} = \left(n_{+} + \frac{1}{2}\right)\hbar\omega_{+} + \frac{1}{2}s\hbar\omega_{s} + \left(n_{z} + \frac{1}{2}\right)\hbar\omega_{z} - \left(n_{-} + \frac{1}{2}\right)\hbar\omega_{-} \quad (61)$$

برا ي مثال ى كه بالاتر در نظر گرفتيم ($B = 5.8 ext{ T}$ و $B = 70.435 ext{ cm}^2$ داريم:

 $\hbar \omega_+ = 5.6 \times 10^{-4} \,\mathrm{eV},$ (62)

$$\omega_s \simeq \omega_c \simeq \omega_+ \tag{63}$$

$$\hbar \,\omega_z = 2.7 \times 10^{-7} \,\mathrm{eV},\tag{64}$$

$$\hbar \omega_{-} = 5.4 \times 10^{-11} \,\mathrm{eV}.$$
 (65)

اتم ِ ژِئونیوم تراز ِ پایه، به معنی ی ِ دقیق ِ آن ندارد _ زیرا $\infty = -\infty = E_{n_+,n_z,n_-,s}$ است. با نگاه کردن به حل ِ کلاسیک (معادلهها ی ِ (21) تا (23)) میتوان قانع شد که برا ی ِ n_- ها ی بزرگ، مدار ِ ذرّه هذلولیگونها ی ِ کاواک ِ پِنینگ را قطع میکند. با دقّت کردن در شکل ِ تابع ِ موج هم میتوان این را دید. مثلاً برا ی 0 = n_+ و $n_- = n$ ، دیده میشود که تابع ِ موج هست

$$\Psi_{0,k} = \Phi_{k,-k} = \frac{1}{\sqrt{2\pi}} e^{-ik\varphi} \sqrt{\frac{2}{k!}} \left(\frac{\rho}{d}\right)^k e^{-\frac{1}{2}\frac{\rho^2}{d^2}},\tag{66}$$

که دامنه ي آن در شعاع $\sqrt{k}\,d$ بيشينه است، يعنى احتمال ِ حظور ِ الکترون در شعاع $\sqrt{k}\,d$ بيشينه است، و اين شعاع با افزايش ِ k زياد مىشود.

امّا فرض کنید $0 = n_-$ باشد. در این صورت حالت ِ پایه با $(n_+, n_z, s) = (0, 0, -1)$ داده میشود. اگر n_+ به اندازه ی 1 زیاد شود، انرژی به اندازه ی $\log meV \simeq 0.6 meV$ زیاد میشود. اگر 1 = s بشود، انرژی به اندازه ی $1 = \frac{\hbar \omega_s}{2}$ زیاد میشود که تقریباً برابر است با $\hbar \omega_c$ ، ولی البتّه با آن اختلاف دارد، و این

شكل ۴: ترازها ى ِژِئونيوم. دقّت كنيد مقياس ِ اين شكل درست نيست. فاصله ي خطوط ِ متناظر با n_{\pm} تقريباً بايد 2000 برابر ِ فاصله ي خطوط ِ متناظر با n_{\pm} باشد. وقت ى n_{\pm} زياد شود، خطها باز هم از هم تفكيك مىشوند كه فاصله ى ِ بين ِ آنها 50,000 برابر كوچكتر از فاصله ى ِ خطوله ى ِ خطول متناظر با ج

اختلاف به علّت ِ آن است که g برا یِ الکترون دقیقاً 2 نیست. اگر n_z به اندازه ی ِ 1 زیاد شود، انرژی به اندازه یِ 60 $\mu \ {
m eV}$ زیاد میشود. پس ترازها ی ِ انرژی شبیه به شکل ِ ۴ اند.

6 چند کاربرد

برا ی ِ ذرّہ ای به جرم ِ M و بار ِ Z e، بسامد ِ سیکلوترون $u_c = rac{Z \, e \, B}{2 \pi \, M}$ است. اگر چنین ذرّہ ای را در یک تله ی ِ نِینگ گیر بیندازیم، با مطالعه ی ِ طیف ِ آن میتوان u_c را سنجید. پس اگر B و Z معلوم

باشند مىتوان M را به دقّت سنجيد. سنجش ِ دقيق ِ B چندان ساده نيست. مىتوان يک ذرّه ى ِ خاص را به عنوان ِ سنجه ي استاندارد انتخاب کرد ـــ مثلاً 12 را. به اين ترتيب با سنجش ِ u_c برا ي اين ذرّه ي استاندارد و برا ي يک ذرّه ي ديگر (مثلاً x)، خواهيم داشت:

$$M_x = \frac{Z_x}{Z_{\text{ref}}} \frac{\nu_{c,\text{ref}}}{\nu_{c,x}} M_{\text{ref}}$$
(67)

اين دقيقترين روش ى است كه تا كنون برا ي سنجش ِ جرم ِ ايزوتوپها ي مختلف ابداع شده است. يك ى از آزمايشگاهها يى كه به اين منظور ساخته شده SMILTRAP است . SMILETRAP ^{c)} حاصل ِ همكارى ي آزمايشگاه ِ مانه سيگبام ^{b)} در دانشگاه ِ استُكهّلم ^{e)} و بخش ِ فيزيك ِ دانشگاه ِ يوهايس گوينبرگ ِ مِينتس ^{f)} است و از اوايل ِ دهه ي 1990 راه افتاده . اين آزمايشگاه مىتواند جرم ِ ايزوتوپها را با دقّت ِ ^{e-10} تعيين كند.

سنجيدن ِ نسبت ِ ژيرومغناطيسی ي ذرّه (g) بسيار مهم است. اين كار با مطالعه ي طيف ِ ژئونيوم ممكن است، زيرا $\omega_s = rac{g}{2}\,\omega_c$ است. بسيار ی از دقيقترين سنجشها يی كه از نسبت ِ ژيرومغناطيسی ي ذرّهها داريم با استفاده از همين مطالعه ي طيف ِ ژئونيوم بوده است.

7 مراجع

- [1.] Lowell S. Brown, Gerald Gabrielse, "Geonium theory: Physics of a single electron or ion in a Penning trap", *Reviews of Modern Physics*, vol. 58 (1986), pp. 233-311.
- [2.] Hans G. Dehmelt, "Experiments with an isolated subatomic particle at rest", Nobel Lecture, 8 Dec 1989.
- [3.] Hans Dehmelt, "Less is more: Experiments with and individual atomic particle at rest in free space", American Journal of Physics, vol. 58, no. 1 (Jan 1990), pp. 18–27.
- [4.] Julian Schwinger, Quantum Mechanics, Symbolism of Atomic Measurements, Springer, 2001, pp. 288–299.

8 نامها ی خاص

- ^{a)} Hans Georg Dehmelt;
- ^{b)} Frans Michel Penning;
- ^{c)} Stockholm-Mainz Ion LEvitation TRAP;
- ^{d)} Manne Siegbahn;
- ^{e)} Johannes Gutenberg University, Maniz;
- ^{f)} Stockholm University;

هانس، گئورگ دِمِلت در 1923 در آلمان متولد شد. در در سال 1933، سال به قدرت رسيدن ِ هيتلر، در حال ي كه ده سال بيشتر نداشت از پس ِ آزمون ِ ورودي ي ِ قديمي ترين دبيرستان ِ لاتين ِ برلين [®] بر آمد و وارد ِ اين دبيرستان شد. يدر و مادر ش به انحاء ٍ مختلف اسباب ٍ پيشرفت ٍ علمي ي او را فراهم مي گردند. خود ش هم با علاقه به تعمير و ساخت ِ راديوها ي ٍ لاميي مي يرداخت. در بهار ٍ 1940 از دبيرستان فار غالتحصيل شد. این زمان مقارن بود با حمله ی آلمان به فرانسه. دملت به خدمت سربازی فرا خوانده شد. داوطلب خدمت در واحد بدافند هوایی شد. واحد ش که برا ی کمک به نیروها ی ِ آلمان به استالینگراد اعزام شده بود جزو ِ معدود واحدها ی ِ خوششانس ی بود که از محاصره ی نیروها ی شوروی گریخت. در 1943 به دستور _ مقامات ِ بالاتر به دانش ،گاه ِ برسلاو (h) رفت تا فیزیک بخواند. یک سال بعد که اوضاع ِ جنگ بدتر شده بود به جبهه ی غرب در بلژیک فرستاده شد. در آن جا اسبر پنیروها ی آمریکایی شد. در 1946، پس از یک سال اسارت آزاد شد. در حالی که با تعمیر ، رادیو زندهگی می گذراند وارد. دانش گاه ا کُتینگن ⁱ⁾ شد. در این جا اشخاص ی مثل اهایزنیرگ ⁱ⁾، و فُن لائه ^{k)}، درس می دادند. در 1948 فوقلیسانس ش را گرفت. در 1949 جزو ِ گروه ی بود که تشدید. چهارقطبی ی هستهای ^{۱)} را کشف کردند. این کار در رساله ی دکترا ی دملت چاپ شد و باعث شد دانشگاه دوک ^{m)} به او بیش نهاد یک موقعیّت بسادکتری يدهد. به اين ترتيب به آمريكا رفت.

زندهگینامه ی خودنوشت ِ او را میتوانید در منزلگاه ِ بنیاد ِ نُبلِ بیابید.

http://nobelprize.org

- ^{g)} Gymnasium zum Grauen Kloster, Berlin; ^{h)} Universität Bereslau;
- ⁱ⁾ Universität Göttingen; ^{j)} Heinsenberg; ^{k)} M. von Laue;
- ¹⁾ Nuclear Quadrupole Resonance; ^{m)} Duke University,